Direct formulation and algorithms for the probit-based stochastic user equilibrium traffic assignment problem
Qun Chen and
Shuangli Pan
Transportation Planning and Technology, 2017, vol. 40, issue 7, 757-770
Abstract:
This paper proposes simple and direct formulation and algorithms for the probit-based stochastic user equilibrium traffic assignment problem. It is only necessary to account for random variables independent of link flows by performing a simple transformation of the perceived link travel time with a normal distribution. At every iteration of a Monte-Carlo simulation procedure, the values of the random variables are sampled based on their probability distributions, and then a regular deterministic user equilibrium assignment is carried out to produce link flows. The link flows produced at each iteration of the Monte-Carlo simulation are averaged to yield the final flow pattern. Two test networks demonstrate that the proposed algorithms and the traditional algorithm (the Method of Successive Averages) produce similar results and that the proposed algorithms can be extended to the computation of the case in which the random error term depends on measured travel time.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2017.1340022 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:40:y:2017:i:7:p:757-770
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2017.1340022
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().