Robust flight-to-gate assignment using flight presence probabilities
Oscar R. P. van Schaijk and
Hendrikus G. Visser
Transportation Planning and Technology, 2017, vol. 40, issue 8, 928-945
Abstract:
In this paper we present a novel method to improve the robustness of solutions to the Flight-to-Gate Assignment Problem (FGAP), with the aim to reduce the need for gate re-planning due to unpredicted flight schedule disturbances in the daily operations at an airport. We propose an approach in which the deterministic gate constraints are replaced by stochastic gate constraints that incorporate the inherent stochastic flight delays in such a way so as to ensure that the expected gate conflict probability of two flights assigned to the same gate at the same time does not exceed a user-specified value. The novel approach is integrated into an existing multiple time slot FGAP model that relies on a binary integer programming formulation and is tested using real-life data pertaining to Amsterdam Airport Schiphol. The results confirm that the proposed approach holds out great promise to improve the robustness of the FGAP solutions.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2017.1355887 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:40:y:2017:i:8:p:928-945
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2017.1355887
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().