EconPapers    
Economics at your fingertips  
 

A fuzzy logic-genetic algorithm approach to modelling public transport users’ risk-taking behaviour

Subeh Chowdhury and Michael O’Sullivan

Transportation Planning and Technology, 2018, vol. 41, issue 2, 170-185

Abstract: This paper seeks to determine the effects of uncertainty in out-of-vehicle times on route choice. Data were collected at two key interchanges in Auckland, New Zealand. Previous work modelled the data using a manual approach to fuzzy logic. This study extends that work by automating the process through defining a black-box function to match the survey data, then employing a genetic algorithm to fine-tune the fuzzy logic model. Results show that automation and the genetic algorithm improve the model’s capability to more accurately predict ridership. The tuning of the membership functions is conducted twice, first using initial fuzzy rules and again after the fuzzy rules have been adjusted to reduce disparity between the output and survey data. The calibrated membership functions provided for operational (transfer waiting and walking time and delay) and physical attributes (safety and seat availability) can be used by practitioners to determine an estimated ridership.

Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2018.1407520 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:41:y:2018:i:2:p:170-185

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20

DOI: 10.1080/03081060.2018.1407520

Access Statistics for this article

Transportation Planning and Technology is currently edited by Dr. David Gillingwater

More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:transp:v:41:y:2018:i:2:p:170-185