Four-step travel demand model implementation for estimating traffic volumes on rural low-volume roads in Wyoming
Dick T. Apronti and
Khaled Ksaibati
Transportation Planning and Technology, 2018, vol. 41, issue 5, 557-571
Abstract:
This study develops a four-step travel demand model for estimating traffic volumes for low-volume roads in Wyoming. The study utilizes urban travel behavior parameters and processes modified to reflect the rural and low-volume nature of Wyoming local roads. The methodology disaggregates readily available census block data to create transportation analysis zones adequate for estimating traffic on low-volume rural roads. After building an initial model, the predicted and actual traffic volumes are compared to develop a calibration factor for adjusting trip rates. The adjusted model is verified by comparing estimated and actual traffic volumes for 100 roads. The R-square value from fitting predicted to actual traffic volumes is determined to be 74% whereas the Percent Root Mean Square Error is found to be 50.3%. The prediction accuracy for the four-step travel demand model is found to be better than a regression model developed in a previous study.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2018.1469288 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:41:y:2018:i:5:p:557-571
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2018.1469288
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().