Identifying the spatial distribution of public transportation trips by node and community characteristics
Jun Li,
Peiqing Zheng and
Wenna Zhang
Transportation Planning and Technology, 2020, vol. 43, issue 3, 325-340
Abstract:
Identifying the spatial distribution of travel activities can help public transportation managers optimize the allocation of resources. In this paper, transit networks are constructed based on traffic flow data rather than network topologies. The PageRank algorithm and community detection method are combined to identify the spatial distribution of public transportation trips. The structural centrality and PageRank values are compared to identify hub stations; the community detection method is applied to reveal the community structures. A case study in Guangzhou, China is presented. It is found that the bus network has a community structure, significant weekday commuting and small-world characteristics. The metro network is tightly connected, highly loaded, and has no obvious community structure. Hub stations show distinct differences in terms of volume and weekend/weekday usage. The results imply that the proposed method can be used to identify the spatial distribution of urban public transportation and provide a new study perspective.
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2020.1735776 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:43:y:2020:i:3:p:325-340
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2020.1735776
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().