Analyzing travel behavior in Hanoi using Support Vector Machine
Thi My Thanh Truong,
Hai-Bang Ly,
Dongwoo Lee,
Binh Thai Pham and
Sybil Derrible
Transportation Planning and Technology, 2021, vol. 44, issue 8, 843-859
Abstract:
This study investigates travel decisions (i.e. travel mode and destination) in Hanoi (Vietnam) using Support Vector Machine (SVM). First, a travel interview survey was conducted and 311 responses were collected across Hanoi. Second, a SVM model was trained to predict travel decisions and compared with a multinomial logit (MNL) model (as a benchmark). Third, the most important variables that affect travel decisions were ranked and discussed. The results show that SVM achieves an accuracy of 76.1% (compared to 72.9% for MNL). Moreover, proposed parking charges, household income, trip mode, and trip cost are found to be the most important variables. In contrast, trip purpose, gender, and occupation are found to negatively affect the model. Overall, low travel cost and low motorcycle parking charges, especially for commuters and shoppers, make people less willing to switch to more sustainable modes such as public and active transport.
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/03081060.2021.1992178 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transp:v:44:y:2021:i:8:p:843-859
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/GTPT20
DOI: 10.1080/03081060.2021.1992178
Access Statistics for this article
Transportation Planning and Technology is currently edited by Dr. David Gillingwater
More articles in Transportation Planning and Technology from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().