Data to the people: a review of public and proprietary data for transport models
Vishal Mahajan,
Nico Kuehnel,
Aikaterini Intzevidou,
Guido Cantelmo,
Rolf Moeckel and
Constantinos Antoniou
Transport Reviews, 2022, vol. 42, issue 4, 415-440
Abstract:
Data play an indispensable role in transport modelling. The availability of data from non-conventional sources, such as mobile phones, social media, and public transport smart cards, changes the way we conduct mobility analyses and travel forecasting. Existing studies have demonstrated the multitude and varied applications of these emerging data in transport modelling. The transferability of current research and further endeavours depend mostly on the availability of these data. Therefore, the openness or public availability of the prominent data for transport modelling needs to be adequately investigated. Such a discussion should also encompass these data’s application aspects to provide a holistic overview. This paper defines a typology for the data classification based on a set of availability or openness attributes from the existing literature. Subsequently, we use the developed typology to classify the prominent transport data into four categories: (i) Commercial data, (ii) Inaccessible data, (iii) Gratis and accessible data with restricted use, and (iv) Open data. Using this typology, we conclude that the public data, which refer to the data that are accessible and free of cost, are a superset of open data. Further, we discuss the applications and limitations of the selected data in transport modelling and highlight in which task(s) certain data excel. Lastly, we synthesise our review using a Strengths, Weaknesses, Opportunities and Threats (SWOT) analysis to bring out the aspects relevant to data owners and data consumers. Public availability of data can help in various modelling steps such as trip generation, accessibility, destination choice, route choice, network modelling. Complementary datasets such as General Transit Feed Specification (GTFS) and Volunteered Geographic Information (VGI) increase the usability of other data. Thus, modellers can gain from the positive cascade effect by prioritising these data. There is also a potential for data owners to release proprietary data, such as mobile phone data, with restricted-use licenses after addressing privacy risks. Our study contributes by dealing with two problems at the same time. On the one hand, the paper analyses existing data based on their potential for mobility studies. On the other hand, we classify them based on how open they are. Hence, we identify the most promising public data for developing the next generation of transport models.
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/01441647.2021.1977414 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:transr:v:42:y:2022:i:4:p:415-440
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TTRV20
DOI: 10.1080/01441647.2021.1977414
Access Statistics for this article
Transport Reviews is currently edited by Professor David Banister and Moshe Givoni
More articles in Transport Reviews from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().