EconPapers    
Economics at your fingertips  
 

A selective review of statistical methods using calibration information from similar studies

Jing Qin, Yukun Liu and Pengfei Li

Statistical Theory and Related Fields, 2022, vol. 6, issue 3, 175-190

Abstract: In the era of big data, divide-and-conquer, parallel, and distributed inference methods have become increasingly popular. How to effectively use the calibration information from each machine in parallel computation has become a challenging task for statisticians and computer scientists. Many newly developed methods have roots in traditional statistical approaches that make use of calibration information. In this paper, we first review some classical statistical methods for using calibration information, including simple meta-analysis methods, parametric likelihood, empirical likelihood, and the generalized method of moments. We further investigate how these methods incorporate summarized or auxiliary information from previous studies, related studies, or populations. We find that the methods based on summarized data usually have little or nearly no efficiency loss compared with the corresponding methods based on all-individual data. Finally, we review some recently developed big data analysis methods including communication-efficient distributed approaches, renewal estimation, and incremental inference as examples of the latest developments in methods using calibration information.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24754269.2022.2037201 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tstfxx:v:6:y:2022:i:3:p:175-190

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tstf20

DOI: 10.1080/24754269.2022.2037201

Access Statistics for this article

Statistical Theory and Related Fields is currently edited by Zhao Wei

More articles in Statistical Theory and Related Fields from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tstfxx:v:6:y:2022:i:3:p:175-190