EconPapers    
Economics at your fingertips  
 

Eight predictive powers with historical and interim data for futility and efficacy analysis

Ying-Ying Zhang, Teng-Zhong Rong and Man-Man Li

Statistical Theory and Related Fields, 2022, vol. 6, issue 4, 277-298

Abstract: When the historical data of the early phase trial and the interim data of the Phase III trial are available, we should use them to give a more accurate prediction in both futility and efficacy analysis. The predictive power is an important measure of the practical utility of a proposed trial, and it is better than the classical statistical power in giving a good indication of the probability that the trial will demonstrate a positive or statistically significant outcome. In addition to the four predictive powers with historical and interim data available in the literature and summarized in Table 1, we discover and calculate another four predictive powers also summarized in Table 1, for one-sided hypotheses. Moreover, we calculate eight predictive powers summarized in Table 2, for the reversed hypotheses. The combination of the two tables gives us a complete picture of the predictive powers with historical and interim data for futility and efficacy analysis. Furthermore, the eight predictive powers with historical and interim data are utilized to guide the futility analysis in the tamoxifen example. Finally, extensive simulations have been conducted to investigate the sensitivity analysis of priors, sample sizes, interim result and interim time on different predictive powers.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24754269.2021.1991557 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tstfxx:v:6:y:2022:i:4:p:277-298

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/tstf20

DOI: 10.1080/24754269.2021.1991557

Access Statistics for this article

Statistical Theory and Related Fields is currently edited by Zhao Wei

More articles in Statistical Theory and Related Fields from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tstfxx:v:6:y:2022:i:4:p:277-298