Biometric Solvency Risk for Portfolios of General Life Contracts. I. The Single-Life Multiple Decrement Case
Werner Hürlimann
North American Actuarial Journal, 2010, vol. 14, issue 4, 400-419
Abstract:
Solvency II splits life insurance risk into seven risk classes consisting of three biometric risks (mortality risk, longevity risk, and disability/morbidity risk) and four nonbiometric risks (lapse risk, expense risk, revision risk, and catastrophe risk). The best estimate liabilities for the biometric risks are valued with biometric life tables (mortality and disability tables), while those of the nonbiometric risks require alternative valuation methods. The present study is restricted to biometric risks encountered in traditional single-life insurance contracts with multiple causes of decrement. Based on the results of quantitative impact studies, process risk was deemed to be not significant enough to warrant an explicit calculation. It was therefore assumed to be implicitly included in the systematic/parameter risk, resulting in a less complex standard formula. For the purpose of internal models and improved risk management, it appears important to capture separately or simultaneously all risk components of biometric risks. Besides its being of interest for its own sake, this leads to a better understanding of the standard approach and its application extent. Based on a total balance sheet approach we express the liability risk solvency capital of an insurance portfolio as value-at-risk and conditional value-at-risk of the prospective liability risk understood as random present value of future cash flows at a given time. The proposed approach is then applied to determine the biometric solvency capital for a portfolio of general life contracts. Using the conditional mean and variance of a portfolio’s prospective liability risk and a gamma distribution approximation we obtain simple solvency capital formulas as well as corresponding solvency capital ratios. To account for the possibility of systematic/parameter risk, we propose either to shift the biometric life tables or to apply a stochastic biometric model, which allows for random biometric rates. A numerical illustration for a cohort of immediate life annuities in arrears reveals the importance of process risk in the assessment of longevity risk solvency capital.
Date: 2010
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/10920277.2010.10597598 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uaajxx:v:14:y:2010:i:4:p:400-419
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uaaj20
DOI: 10.1080/10920277.2010.10597598
Access Statistics for this article
North American Actuarial Journal is currently edited by Kathryn Baker
More articles in North American Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().