Assessing High-Risk Scenarios by Full-Range Tail Dependence Copulas
Lei Hua and
Michelle Xia
North American Actuarial Journal, 2014, vol. 18, issue 3, 363-378
Abstract:
Copulas with a full-range tail dependence property can cover the widest range of positive dependence in the tail, so that a regression model can be built accounting for dynamic tail dependence patterns between variables. We propose a model that incorporates both regression on each marginal of bivariate response variables and regression on the dependence parameter for the response variables. An ACIG copula that possesses the full-range tail dependence property is implemented in the regression analysis. Comparisons between regression analysis based on ACIG and Gumbel copulas are conducted, showing that the ACIG copula is generally better than the Gumbel copula when there is intermediate upper tail dependence. A simulation study is conducted to illustrate that dynamic tail dependence structures between loss and ALAE can be captured by using the one-parameter ACIG copula. Finally, we apply the ACIG and Gumbel regression models for a dataset from the U.S. Medical Expenditure Panel Survey. The empirical analysis suggests that the regression model with the ACIG copula improves the assessment of high-risk scenarios, especially for aggregated dependent risks.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/10920277.2014.888009 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uaajxx:v:18:y:2014:i:3:p:363-378
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uaaj20
DOI: 10.1080/10920277.2014.888009
Access Statistics for this article
North American Actuarial Journal is currently edited by Kathryn Baker
More articles in North American Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().