EconPapers    
Economics at your fingertips  
 

Regression Tree Credibility Model

Liqun Diao and Chengguo Weng

North American Actuarial Journal, 2019, vol. 23, issue 2, 169-196

Abstract: This article applies machine learning techniques to credibility theory and proposes a regression-tree-based algorithm to integrate covariate information into credibility premium prediction. The recursive binary algorithm partitions a collective of individual risks into mutually exclusive subcollectives and applies the classical Bühlmann-Straub credibility formula for the prediction of individual net premiums. The algorithm provides a flexible way to integrate covariate information into individual net premiums prediction. It is appealing for capturing nonlinear and/or interaction covariate effects. It automatically selects influential covariate variables for premium prediction and requires no additional ex ante variable selection procedure. The superiority in prediction accuracy of the proposed algorithm is demonstrated by extensive simulation studies. The proposed method is applied to the U.S. Medicare data for illustration purposes.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1080/10920277.2018.1554497 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uaajxx:v:23:y:2019:i:2:p:169-196

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uaaj20

DOI: 10.1080/10920277.2018.1554497

Access Statistics for this article

North American Actuarial Journal is currently edited by Kathryn Baker

More articles in North American Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uaajxx:v:23:y:2019:i:2:p:169-196