EconPapers    
Economics at your fingertips  
 

Time Series Data Mining with an Application to the Measurement of Underwriting Cycles

Iqbal Owadally, Feng Zhou, Rasaq Otunba, Jessica Lin and Douglas Wright

North American Actuarial Journal, 2019, vol. 23, issue 3, 469-484

Abstract: Underwriting cycles are believed to pose a risk management challenge to property-casualty insurers. The classical statistical methods that are used to model these cycles and to estimate their length assume linearity and give inconclusive results. Instead, we propose to use novel time series data Mining algorithms to detect and estimate periodicity on U.S. property-casualty insurance markets. These algorithms are in increasing use in data science and are applied to Big Data. We describe several such algorithms and focus on two periodicity detection schemes. Estimates of cycle periods on industry-wide loss ratios, for all lines combined and for four specific lines, are provided. One of the methods appears to be robust to trends and to outliers.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10920277.2019.1570468 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uaajxx:v:23:y:2019:i:3:p:469-484

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uaaj20

DOI: 10.1080/10920277.2019.1570468

Access Statistics for this article

North American Actuarial Journal is currently edited by Kathryn Baker

More articles in North American Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uaajxx:v:23:y:2019:i:3:p:469-484