EconPapers    
Economics at your fingertips  
 

Smoothed Quantiles for Measuring Discrete Risks

Vytaras Brazauskas and Ponmalar Ratnam

North American Actuarial Journal, 2023, vol. 27, issue 2, 253-277

Abstract: Many risk measures can be defined through the quantile function of the underlying loss variable (e.g., a class of distortion risk measures). When the loss variable is discrete or mixed, however, the definition of risk measures has to be broadened, which makes statistical inference trickier. To facilitate a straightforward transition from the risk measurement literature of continuous loss variables to that of discrete, in this article we study smoothing of quantiles for discrete variables. Smoothed quantiles are defined using the theory of fractional or imaginary order statistics, which was originated by Stigler (1977). To prove consistency and asymptotic normality of sample estimators of smoothed quantiles, we utilize the results of Wang and Hutson (2011) and generalize them to vectors of smoothed quantiles. Further, we thoroughly investigate extensions of this methodology to discrete populations with infinite support (e.g., Poisson and zero-inflated Poisson distributions). Furthermore, large- and small-sample properties of the newly designed estimators are investigated theoretically and through Monte Carlo simulations. Finally, applications of smoothed quantiles to risk measurement (e.g., estimation of distortion risk measures such as Value at Risk, conditional tail expectation, and proportional hazards transform) are discussed and illustrated using automobile accident data. Comparisons between the classical (and linearly interpolated) quantiles and smoothed quantiles are performed as well.

Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/10920277.2022.2071741 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uaajxx:v:27:y:2023:i:2:p:253-277

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uaaj20

DOI: 10.1080/10920277.2022.2071741

Access Statistics for this article

North American Actuarial Journal is currently edited by Kathryn Baker

More articles in North American Actuarial Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uaajxx:v:27:y:2023:i:2:p:253-277