Fundamental Analysis via Machine Learning
Kai Cao and
Haifeng You
Financial Analysts Journal, 2024, vol. 80, issue 2, 74-98
Abstract:
We examine the efficacy of machine learning in a central task of fundamental analysis: forecasting corporate earnings. We find that machine learning models not only generate significantly more accurate and informative out-of-sample forecasts than the state-of-the-art models in the literature but also perform better compared to analysts’ consensus forecasts. This superior performance appears attributable to the ability of machine learning to uncover new information through identifying economically important predictors and capturing nonlinear relationships. The new information uncovered by machine learning models is of considerable economic value to investors. It has significant predictive power with respect to future stock returns, with stocks in the most favorable new information quintile outperforming those in the least favorable quintile by approximately 34 to 77 bps per month on a risk-adjusted basis.
Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/0015198X.2024.2313692 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:ufajxx:v:80:y:2024:i:2:p:74-98
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/ufaj20
DOI: 10.1080/0015198X.2024.2313692
Access Statistics for this article
Financial Analysts Journal is currently edited by Maryann Dupes
More articles in Financial Analysts Journal from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().