A CatBoost-Based Approach for High-Accuracy Botnet Detection
Abdulkader Hajjouz ()
Technium, 2023, vol. 15, issue 1, 26-32
Abstract:
The rising prevalence of network botnet attacks poses a significant threat to online security. Compromised networks controlled by malicious entities can perpetrate harm, including distributed denial of service attacks and data theft. In this study, we introduce a method to detect these botnets using the CatBoostClassifier. By analyzing network traffic for suspicious patterns, our system efficiently identifies potential botnet activities. Utilizing the CTU-13 dataset, we achieved an impressive 99.8699% accuracy, underscoring the efficacy of our approach. This research offers valuable insights into botnet attack detection and presents a robust solution for enhancing network security.
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://techniumscience.com/index.php/technium/article/view/9635/3589 (application/pdf)
https://techniumscience.com/index.php/technium/article/view/9635 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tec:techni:v:15:y:2023:i:1:p:26-32
DOI: 10.47577/technium.v15i.9635
Access Statistics for this article
Technium is currently edited by Scurtu Ionut Cristian
More articles in Technium from Technium Science
Bibliographic data for series maintained by Ana Maria Golita ().