A Bayesian Approach to Combining Conditional Demand and Engineering Models of Electricity Usage
Douglas W Caves
The Review of Economics and Statistics, 1987, vol. 69, issue 3, 438-48
Abstract:
Load forecasting models employed in the electric utility industry have become increas ingly dependent upon information about the electricity used by indivi dual appliances (i.e., end uses). Currently, information on appliance usage is obtained from two fundamentally different sources: (1) engi neering estimates and (2) conditional demand estimates. Bayesian anal ysis provides the means by which these two sources can be formally co mbined. Observed usage data (via the conditional demand approach) are used to modify a set of prior beliefs (the engineering approach), transforming them into a posterior distribution that describes appliance usage patterns and reflects the evidence provided by both approaches. Coauthors are Joseph A. Herriges, Kenneth E. Train, and Robert J. Windle. Copyright 1987 by MIT Press.
Date: 1987
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://links.jstor.org/sici?sici=0034-6535%2819870 ... O%3B2-R&origin=repec full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:69:y:1987:i:3:p:438-48
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().