Constraining Kalman Filter and Smoothing Estimates to Satisfy Time-Varying Restrictions
Howard E Doran
The Review of Economics and Statistics, 1992, vol. 74, issue 3, 568-72
Abstract:
It sometimes happens that the unobservable state vector of a linear dynamic model expressed in the state space is subject to known restrictions. Incorporation of this information into the Kalman filter procedure will increase the efficiency of estimation. It is shown that a simple augmentation of the measurement equation constrains the estimated state vector to obey the restrictions. The method applies whether the restrictions are time-invariant, time-varying, linear, or nonlinear. Copyright 1992 by MIT Press.
Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://links.jstor.org/sici?sici=0034-6535%2819920 ... 0.CO%3B2-Y&origin=bc full text (application/pdf)
Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:74:y:1992:i:3:p:568-72
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().