Estimation Of A Change Point In Multiple Regression Models
Jushan Bai
The Review of Economics and Statistics, 1997, vol. 79, issue 4, 551-563
Abstract:
This paper studies the least squares estimation of a change point in multiple regressions. Consistency, rate of convergence, and asymptotic distributions are obtained. The model allows for lagged dependent variables and trending regressors. The error process can be dependent and heteroskedastic. For nonstationary regressors or disturbances, the asymptotic distribution is shown to be skewed. The analytical density function and the cumulative distribution function for the general skewed distribution are derived. The analysis applies to both pure and partial changes. The method is used to analyze the response of market interest rates to discount rate changes. © 1997 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (375)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/003465397557132 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:79:y:1997:i:4:p:551-563
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().