Estimation Of A Duration Model In The Presence Of Missing Data
Todd Stinebrickner
The Review of Economics and Statistics, 1999, vol. 81, issue 3, 529-542
Abstract:
This paper utilizes recent simulation techniques in a two-stage estimation method which is applicable for a wide range of statistical models in the presence of missing data. The first stage of the method provides a way to estimate (and simulate from) the joint distribution of missing variables when the missing variables are continuous, binary, or ordered discrete. The second stage uses the first-stage estimates to “integrate” out the effects of the missing variables and obtain model estimates. The implementation of the method in this paper allows theoretically important, partially missing wage and school characteristic variables-which are not necessarily independently determined-to be included in a proportional hazard model of teacher attrition. © 1999 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/003465399558283 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:81:y:1999:i:3:p:529-542
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().