Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Microlevel Data
Kathleen Bell and
Nancy E. Bockstael
The Review of Economics and Statistics, 2000, vol. 82, issue 1, 72-82
Abstract:
The application of spatial econometrics techniques to microlevel data of firms or households is problematic because of potentially large sample sizes and more-complicated spatial weight matrices. This paper provides the first application to actual household-level data of a new generalized-moments (GM) estimation technique developed by Kelejian and Prucha. The results based on this method, which is computationally feasible for any size data set, track those generated from the more conventional maximum-likelihood approach. The GM approach is shown to have the added advantage of easily allowing estimation of a more flexible functional form for the spatial weight matrix. © 2000 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology
Date: 2000
References: Add references at CitEc
Citations: View citations in EconPapers (177)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/003465300558641 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:82:y:2000:i:1:p:72-82
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().