Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence
Zhong Zhao
The Review of Economics and Statistics, 2004, vol. 86, issue 1, 91-107
Abstract:
We compare propensity-score matching methods with covariatematching estimators. We first discuss the data requirements of propensity-score matching estimators and covariate matching estimators. Then we propose two new matching metrics incorporating the treatment outcome information and participation indicator information, and discuss the motivations of different metrics. Next we study the small-sample properties of propensity-score matching versus covariate matching estimators, and of different matching metrics, through Monte Carlo experiments. Through a series of simulations, we provide some guidance to practitioners on how to choose among different matching estimators and matching metrics. 2004 President and Fellows of Harvard College and the Massachusetts Institute of Technology.
Date: 2004
References: Add references at CitEc
Citations: View citations in EconPapers (188)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/003465304323023705 link to full text (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:86:y:2004:i:1:p:91-107
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press ().