Misclassified Treatment Status and Treatment Effects: An Application to Returns to Education in the United Kingdom
Erich Battistin (ebattist@umd.edu) and
Barbara Sianesi
The Review of Economics and Statistics, 2011, vol. 93, issue 2, 495-509
Abstract:
We study the impact of misreported treatment status on the estimation of causal treatment effects, focusing on applications where no additional information or repeated measurements are available. We first characterize the bias introduced by misclassification on the average treatment effect on the treated (ATT) under a conditional independence assumption, in both a binary and a multiple-treatment setting. We find that the bias of matching-type estimators computed from misclassified data cannot in general be signed. We subsequently provide easily implementable methods to bound the ATT of interest semiparametrically, in particular allowing for very general forms of impact heterogeneity and of the no-treatment outcome equations, as well as for some dependence of the misreporting probabilities on individual characteristics. The empirical problem that motivates our paper is the estimation of the wage returns to a number of educational qualifications in the United Kingdom, allowing for misreporting in attainment. We investigate the sensitivity of the raw estimates to the presence of misclassification and explore the identification power of plausible restrictions on the nature and extent of misclassification. We show that the resulting bounds are sometimes wide but generally point to reasonable ranges of positive values for average returns to schooling among the schooled. For the range of educational qualifications considered, we further show that the claim sometimes made that measurement error bias roughly cancels out selection bias is not supported. More generally, our results show that under relatively mild restrictions, we can obtain strong conclusions regarding our questions of interest. © 2011 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00175 link to full text (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:tpr:restat:v:93:y:2011:i:2:p:495-509
Ordering information: This journal article can be ordered from
https://mitpressjour ... rnal/?issn=0034-6535
Access Statistics for this article
The Review of Economics and Statistics is currently edited by Pierre Azoulay, Olivier Coibion, Will Dobbie, Raymond Fisman, Benjamin R. Handel, Brian A. Jacob, Kareen Rozen, Xiaoxia Shi, Tavneet Suri and Yi Xu
More articles in The Review of Economics and Statistics from MIT Press
Bibliographic data for series maintained by The MIT Press (mitp-repec@mit.edu).