Forest stand biomass of Picea spp.: an additive model that may be related to climate and civilisational changes
Usoltsev Vladimir А.,
Osmirko Anna A.,
Chasovskikh Viktor P.,
Piernik Agnieszka,
Zukow Walery () and
Tsepordey Ivan S.
Additional contact information
Chasovskikh Viktor P.: Ural State Forest Engineering University, Sibirskii trakt str, 37, Yekaterinburg, 620100, Yekaterinburg, Russian Federation
Zukow Walery: Nicolaus Copernicus University, Department of Geobotany and Lanscape Planning, Toruń, Poland
Tsepordey Ivan S.: Russian Academy of Sciences, Ural Branch, Botanical Garden, 8 Marta str., 202a, Yekaterinburg, 620144, Yekaterinburg, Russian Federation
Bulletin of Geography. Socio-economic Series, 2019, vol. 45, issue 45, 133-147
Abstract:
Since ancient times, climate change has largely determined the fate of human civilisation, which was related mainly to changes in the structure and habitats of forest cover. In the context of current climate change, one must know the capabilities of forests to stabilise the climate by increasing biomass and carbon-depositing abilities. For this purpose, the authors compiled a database of harvest biomass (t/ha) in 900 spruce (Picea spp.) sample plots in the Eurasian area and used the methodology of multivariate regression analysis. The first attempt at modelling changes in the biomass additive component composition has been completed, according to the Trans-Eurasian hydrothermal gradients. It is found that the biomass of all components increases with the increase in the mean January temperature, regardless of mean annual precipitation. In warm zonal belts with increasing precipitation, the biomass of most of the components increases. In the process of transitioning from a warm zone to a cold one, the dependence of all biomass components upon precipitation is levelled, and at a mean January temperature of ˗30°C it becomes a weak negative trend. With an increase in temperature of 1°C in different ecoregions characterised by different values of temperature and precipitation, there is a general pattern of decrease in all biomass components. With an increase in precipitation of 100 mm in different ecoregions characterised by different values of temperature and precipitation, most of the components of biomass increase in warm zonal belts, and decrease in cold ones. The development of such models for the main forest-forming species of Eurasia will make it possible to predict changes in the productivity of the forest cover of Eurasia due to climate change.
Keywords: Picea spp; biological productivity; additive model; hydrothermal indices (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2478/bog-2019-0029 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vrs:buogeo:v:45:y:2019:i:45:p:133-147:n:9
DOI: 10.2478/bog-2019-0029
Access Statistics for this article
Bulletin of Geography. Socio-economic Series is currently edited by Daniela Szymańska
More articles in Bulletin of Geography. Socio-economic Series from Sciendo
Bibliographic data for series maintained by Peter Golla ().