Equivalent or absolutely continuous probability measures with given marginals
Berti Patrizia,
Pratelli Luca,
Rigo Pietro and
Spizzichino Fabio
Additional contact information
Berti Patrizia: Dipartimento di Matematica Pura ed Applicata ”G. Vitali”, Universita’ di Modena e Reggio-Emilia, via Campi 213/B, 41100 Modena, Italy
Pratelli Luca: Accademia Navale, viale Italia 72, 57100 Livorno, Italy
Rigo Pietro: Dipartimento di Matematica ”F. Casorati”, Universita’ di Pavia, via Ferrata 1, 27100 Pavia, Italy
Spizzichino Fabio: Dipartimento di Matematica ”G. Castelnuovo”, Universita’ di Roma ”La Sapienza”, piazzale A. Moro 5, 00185 Roma, Italy
Dependence Modeling, 2015, vol. 3, issue 1, 12
Abstract:
Let (X,A) and (Y,B) be measurable spaces. Supposewe are given a probability α on A, a probability β on B and a probability μ on the product σ-field A ⊗ B. Is there a probability ν on A⊗B, with marginals α and β, such that ν ≪ μ or ν ~ μ ? Such a ν, provided it exists, may be useful with regard to equivalent martingale measures and mass transportation. Various conditions for the existence of ν are provided, distinguishing ν ≪ μ from ν ~ μ.
Keywords: Coupling; Domination on rectangles; Equivalent martingale measure; Finitely additive probability measure; Mass transportat; 60A05; 60A10; 28A35; Coupling; Domination on rectangles; Equivalent martingale measure; Finitely additive probability measure; Mass transportat; 60A05; 60A10; 28A35 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/demo-2015-0004 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vrs:demode:v:3:y:2015:i:1:p:12:n:4
DOI: 10.1515/demo-2015-0004
Access Statistics for this article
Dependence Modeling is currently edited by Giovanni Puccetti
More articles in Dependence Modeling from De Gruyter
Bibliographic data for series maintained by Peter Golla ().