EconPapers    
Economics at your fingertips  
 

Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas

Jin Xisong () and Thorsten Lehnert
Additional contact information
Jin Xisong: Banque centrale du Luxembourg, 2, boulevard Royal L-2983 Luxembourg, Luxembourg

Dependence Modeling, 2018, vol. 6, issue 1, 19-46

Abstract: Previous research has focused on the importance of modeling the multivariate distribution for optimal portfolio allocation and active risk management. However, existing dynamic models are not easily applied to high-dimensional problems due to the curse of dimensionality. In this paper, we extend the framework of the Dynamic Conditional Correlation/Equicorrelation and an extreme value approach into a series of Dynamic Conditional Elliptical Copulas. We investigate risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) for passive portfolios and dynamic optimal portfolios using Mean-Variance and ES criteria for a sample of US stocks over a period of 10 years. Our results suggest that (1) Modeling the marginal distribution is important for dynamic high-dimensional multivariate models. (2) Neglecting the dynamic dependence in the copula causes over-aggressive risk management. (3) The DCC/DECO Gaussian copula and t-copula work very well for both VaR and ES. (4) Grouped t-copulas and t-copulas with dynamic degrees of freedom further match the fat tail. (5) Correctly modeling the dependence structure makes an improvement in portfolio optimization with respect to tail risk. (6) Models driven by multivariate t innovations with exogenously given degrees of freedom provide a flexible and applicable alternative for optimal portfolio risk management.

Keywords: risk management; assets allocation; VaR; ES; dynamic conditional correlation (DCC); dynamic equicorrelation (DECO); dynamic copula (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1515/demo-2018-0002 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:demode:v:6:y:2018:i:1:p:19-46:n:2

DOI: 10.1515/demo-2018-0002

Access Statistics for this article

Dependence Modeling is currently edited by Giovanni Puccetti

More articles in Dependence Modeling from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:demode:v:6:y:2018:i:1:p:19-46:n:2