EconPapers    
Economics at your fingertips  
 

On the asymptotic covariance of the multivariate empirical copula process

Genest Christian, Mesfioui Mhamed and Nešlehová Johanna G.
Additional contact information
Genest Christian: Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montréal (Québec) CanadaH3A 0B9
Mesfioui Mhamed: Département de mathématiques et d’informatique, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières (Québec) CanadaG9A 5H7
Nešlehová Johanna G.: Department of Mathematics and Statistics, McGill University, 805, rue Sherbrooke ouest, Montréal (Québec) CanadaH3A 0B9

Dependence Modeling, 2019, vol. 7, issue 1, 279-291

Abstract: Genest and Segers (2010) gave conditions under which the empirical copula process associated with a random sample from a bivariate continuous distribution has a smaller asymptotic covariance than the standard empirical process based on a random sample from the underlying copula. An extension of this result to the multivariate case is provided.

Keywords: Empirical copula process; left-tail decreasing variable-by-variable; limiting covariance; rank-based inference (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/demo-2019-0015 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:demode:v:7:y:2019:i:1:p:279-291:n:15

DOI: 10.1515/demo-2019-0015

Access Statistics for this article

Dependence Modeling is currently edited by Giovanni Puccetti

More articles in Dependence Modeling from De Gruyter
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:279-291:n:15