Neural network modelling of non-prosperity of Slovak companies
Durica Marek (),
Mazanec Jaroslav and
Frnda Jaroslav
Additional contact information
Durica Marek: University of Zilina, Slovakia
Mazanec Jaroslav: University of Zilina, Slovakia
Frnda Jaroslav: University of Zilina, Slovakia
Engineering Management in Production and Services, 2023, vol. 15, issue 3, 1-13
Abstract:
Early identification of potential financial problems is among important companies’ risk management tasks. This paper aims to propose individual and ensemble models based on various types of neural networks. The created models are evaluated based on several quantitative metrics, and the best-proposed models predict the impending financial problems of Slovak companies a year in advance. The precise analysis and cleaning of real data from the financial statements of real Slovak companies result in a data set consisting of the values of nine potential predictors of almost 19 thousand companies. Individual and ensemble models based on MLP and RBF-type neural networks and the Kohonen map are created on the training sample. On the other hand, several metrics quantify the predictive ability of the created models on the test sample. Ensemble models achieved better predictive ability compared to individual models. MLP networks achieved the highest overall accuracy of almost 89 %. However, the non-prosperity of Slovak companies was best identified by RBF networks created by the boosting and bagging technique. The sensitivity of these models is about 87 %. The study found that models based on neural networks can be successfully designed and used to predict financial distress in the Slovak economy.
Keywords: company; Kohonen map; neural network; non-prosperity; predictive ability (search for similar items in EconPapers)
Date: 2023
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2478/emj-2023-0016 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vrs:ecoman:v:15:y:2023:i:3:p:1-13:n:2
DOI: 10.2478/emj-2023-0016
Access Statistics for this article
Engineering Management in Production and Services is currently edited by Joanna Ejdys
More articles in Engineering Management in Production and Services from Sciendo
Bibliographic data for series maintained by Peter Golla ().