Use of Neural Networks in Risk Assessment and Optimization of Insurance Cover in Innovative Enterprises
Pukała Ryszard ()
Additional contact information
Pukała Ryszard: Institute of Economics and Management, State Higher School of Technology and Economics in Jarosław, Poland
Engineering Management in Production and Services, 2016, vol. 8, issue 3, 43-56
Abstract:
The scientific objective of the paper is to present the findings of a study into the use of artificial neural networks in quantifying activity related risks of an innovative enterprise and to optimize its insurance cover in order to minimize the probable financial losses whenever they materialize. The Kohonen network involving the activation of 51 input variables was applied in the study. The outcomes of the stimulation for the given set of variables made it possible to determine the probability of a threat occurring in the classes. The results of the analysis were used to prepare an optimal insurance cover for the activities of the innovative company. The research findings are suitable for use in risk theory as well as in issues relating to entrepreneurship and insurance. The analytical device employed can also be put to practical use as a support tool in corporate risk management.
Keywords: innovative enterprise; risk; neural networks; Kohonen networks; business insurance (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1515/emj-2016-0023 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vrs:ecoman:v:8:y:2016:i:3:p:43-56:n:5
DOI: 10.1515/emj-2016-0023
Access Statistics for this article
Engineering Management in Production and Services is currently edited by Joanna Ejdys
More articles in Engineering Management in Production and Services from Sciendo
Bibliographic data for series maintained by Peter Golla ().