EconPapers    
Economics at your fingertips  
 

Using Social Network Information for Survey Estimation

Suesse Thomas () and Chambers Ray ()
Additional contact information
Suesse Thomas: National Institute for Applied Statistics Research Australia and University of Wollongong, Northfield Avenue, Wollongong, New South Wales 2522, Wollongong, Australia
Chambers Ray: National Institute for Applied Statistics Research Australia and University of Wollongong, Northfield Avenue, Wollongong, New South Wales 2522, Wollongong, Australia

Journal of Official Statistics, 2018, vol. 34, issue 1, 181-209

Abstract: Model-based and model-assisted methods of survey estimation aim to improve the precision of estimators of the population total or mean relative to methods based on the nonparametric Horvitz-Thompson estimator. These methods often use a linear regression model defined in terms of auxiliary variables whose values are assumed known for all population units. Information on networks represents another form of auxiliary information that might increase the precision of these estimators, particularly if it is reasonable to assume that networked population units have similar values of the survey variable. Linear models that use networks as a source of auxiliary information include autocorrelation, disturbance, and contextual models. In this article we focus on social networks, and investigate how much of the population structure of the network needs to be known for estimation methods based on these models to be useful. In particular, we use simulation to compare the performance of the best linear unbiased predictor under a model that ignores the network with model-based estimators that incorporate network information. Our results show that incorporating network information via a contextual model seems to be the most appropriate approach. We also show that one does not need to know the full population network, but that knowledge of the partial network linking the sampled population units to the non-sampled population units is necessary. Finally, we also provide an estimator for the mean-squared error to make an informed decision about using the contextual information, as well as the results showing that this adaptive strategy leads to higher precision.

Keywords: BLUP; social network models; linear models; model-based survey estimation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/jos-2018-0009 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:offsta:v:34:y:2018:i:1:p:181-209:n:9

DOI: 10.1515/jos-2018-0009

Access Statistics for this article

Journal of Official Statistics is currently edited by Annica Isaksson and Ingegerd Jansson

More articles in Journal of Official Statistics from Sciendo
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:offsta:v:34:y:2018:i:1:p:181-209:n:9