An Improved Fellegi-Sunter Framework for Probabilistic Record Linkage Between Large Data Sets
Fortini Marco ()
Additional contact information
Fortini Marco: Italian National Institute of Statistics (Istat) – Directorate for Methodology and Statistical Process Design, Via C. Balbo, 16, 00184, Rome, Italy.
Journal of Official Statistics, 2020, vol. 36, issue 4, 803-825
Abstract:
Record linkage addresses the problem of identifying pairs of records coming from different sources and referred to the same unit of interest. Fellegi and Sunter propose an optimal statistical test in order to assign the match status to the candidate pairs, in which the needed parameters are obtained through EM algorithm directly applied to the set of candidate pairs, without recourse to training data. However, this procedure has a quadratic complexity as the two lists to be matched grow. In addition, a large bias of EM-estimated parameters is also produced in this case, so that the problem is tackled by reducing the set of candidate pairs through filtering methods such as blocking. Unfortunately, the probability that excluded pairs would be actually true-matches cannot be assessed through such methods.The present work proposes an efficient approach in which the comparison of records between lists are minimised while the EM estimates are modified by modelling tables with structural zeros in order to obtain unbiased estimates of the parameters. Improvement achieved by the suggested method is shown by means of simulations and an application based on real data.
Keywords: Structural zeros; robustness; EM algorithm; blocking (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2478/jos-2020-0039 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vrs:offsta:v:36:y:2020:i:4:p:803-825:n:4
DOI: 10.2478/jos-2020-0039
Access Statistics for this article
Journal of Official Statistics is currently edited by Annica Isaksson and Ingegerd Jansson
More articles in Journal of Official Statistics from Sciendo
Bibliographic data for series maintained by Peter Golla ().