EconPapers    
Economics at your fingertips  
 

Multi-objective Optimization Algorithms with the Island Metaheuristic for Effective Project Management Problem Solving

Brester Christina, Ryzhikov Ivan and Semenkin Eugene ()
Additional contact information
Brester Christina: Reshetnev Siberian State University of Science and Technology, Institute of Computer Science and Telecommunications, 31 »Krasnoyarskiy Rabochiy« ave., Krasnoyarsk, 660037, Russian Federation
Ryzhikov Ivan: Reshetnev Siberian State University of Science and Technology, Institute of Computer Science and Telecommunications, 31 »Krasnoyarskiy Rabochiy« ave., Krasnoyarsk, 660037, Russian Federation
Semenkin Eugene: Reshetnev Siberian State University of Science and Technology, Institute of Computer Science and Telecommunications, 31 »Krasnoyarskiy Rabochiy« ave., Krasnoyarsk, 660037, Russian Federation

Organizacija, 2017, vol. 50, issue 4, 364-373

Abstract: Background and Purpose: In every organization, project management raises many different decision-making problems, a large proportion of which can be efficiently solved using specific decision-making support systems. Yet such kinds of problems are always a challenge since there is no time-efficient or computationally efficient algorithm to solve them as a result of their complexity. In this study, we consider the problem of optimal financial investment. In our solution, we take into account the following organizational resource and project characteristics: profits, costs and risks.Design/Methodology/Approach: The decision-making problem is reduced to a multi-criteria 0-1 knapsack problem. This implies that we need to find a non-dominated set of alternative solutions, which are a trade-off between maximizing incomes and minimizing risks. At the same time, alternatives must satisfy constraints. This leads to a constrained two-criterion optimization problem in the Boolean space. To cope with the peculiarities and high complexity of the problem, evolution-based algorithms with an island meta-heuristic are applied as an alternative to conventional techniques.Results: The problem in hand was reduced to a two-criterion unconstrained extreme problem and solved with different evolution-based multi-objective optimization heuristics. Next, we applied a proposed meta-heuristic combining the particular algorithms and causing their interaction in a cooperative and collaborative way. The obtained results showed that the island heuristic outperformed the original ones based on the values of a specific metric, thus showing the representativeness of Pareto front approximations. Having more representative approximations, decision-makers have more alternative project portfolios corresponding to different risk and profit estimations. Since these criteria are conflicting, when choosing an alternative with an estimated high profit, decision-makers follow a strategy with an estimated high risk and vice versa.Conclusion: In the present paper, the project portfolio decision-making problem was reduced to a 0-1 knapsack constrained multi-objective optimization problem. The algorithm investigation confirms that the use of the island meta-heuristic significantly improves the performance of genetic algorithms, thereby providing an efficient tool for Financial Responsibility Centres Management.

Keywords: 0-1 multi-objective constrained knapsack problem; project management portfolio problem; multi-objective evolution-based optimization algorithms; collaborative and cooperative meta-heuristics (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1515/orga-2017-0027 (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:organi:v:50:y:2017:i:4:p:364-373:n:6

DOI: 10.1515/orga-2017-0027

Access Statistics for this article

Organizacija is currently edited by Jože Zupančič

More articles in Organizacija from Sciendo
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:organi:v:50:y:2017:i:4:p:364-373:n:6