Providing a framework for optimizing a mixing design of reactive powder concrete (RPC)
Moghaddam Farid Ghaffari,
Akbarpour Abbas () and
Firouzi Afshin
Additional contact information
Moghaddam Farid Ghaffari: Department of Civil Engineering, Architecture and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran
Akbarpour Abbas: Department of Civil Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
Firouzi Afshin: Department of Civil Engineering, Architecture and Art, Science and Research Branch, Islamic Azad University, Tehran, Iran
Organization, Technology and Management in Construction, 2021, vol. 13, issue 2, 2438-2449
Abstract:
Suitable distribution of particles and the presence of hydration lead to the improved compressive performance and optimum (even reduced) cost in the production of reactive powder concrete (RPC). This study was conducted to obtain a better understanding of RPC and analyze the behavior of modified RPC (MRPC) using the properties of surface resistivity, water penetration, compressive strength, and modulus of elasticity, apart from the cost. The present study was carried out to investigate how to optimize the size and diversity of the aggregate in order to increase the applications and reduce the costs. The options were selected from among the 12 alternatives classified during the construction stages. According to the six weighting parameters used for comparing with the sample, the derived framework can be described as a mixing design for RPC. Five weighting criteria were considered with values of one of the five criteria missing, and in one case, all criteria were taken with equal weights. For the final analysis, the Expert Choice software was used to create a framework for the optimal mix design of RPC and MRPC. The MRPC mixing designs showed good results, with very slight differences compared to RPC. In many cases, MRPC can be used instead of RPC.
Keywords: water penetration; electrical resistivity; modulus of elasticity; pulse velocity; nondestructive testing; construction management; sustainable development and optimal mix design (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.2478/otmcj-2020-0024 (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:vrs:otamic:v:13:y:2021:i:1:p:2438-2449:n:4
DOI: 10.2478/otmcj-2020-0024
Access Statistics for this article
Organization, Technology and Management in Construction is currently edited by Mladen Radujković
More articles in Organization, Technology and Management in Construction from Sciendo
Bibliographic data for series maintained by Peter Golla ().