EconPapers    
Economics at your fingertips  
 

Modelling and forecasting monthly Brent crude oil prices: a long memory and volatility approach

Shaher Al-Gounmeein Remal () and Mohd Tahir Ismail
Additional contact information
Shaher Al-Gounmeein Remal: School of Mathematical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia Department of Mathematics, Faculty of Science, Al-Hussein Bin Talal University, Ma’an, Jordan

Statistics in Transition New Series, 2021, vol. 22, issue 1, 29-54

Abstract: The Standard Generalised Autoregressive Conditionally Heteroskedastic (sGARCH) model and the Functional Generalised Autoregressive Conditionally Heteroskedastic (fGARCH) model were applied to study the volatility of the Autoregressive Fractionally Integrated Moving Average (ARFIMA) model, which is the primary objective of this study. The other goal of this paper is to expand on the researchers’ previous work by examining long memory and volatilities simultaneously, by using the ARFIMA-sGARCH hybrid model and comparing it against the ARFIMA-fGARCH hybrid model. Consequently, the hybrid models were configured with the monthly Brent crude oil price series for the period from January 1979 to July 2019. These datasets were considered as the global economy is currently facing significant challenges resulting from noticeable volatilities, especially in terms of the Brent crude prices, due to the outbreak of COVID-19. To achieve these goals, an R/S analysis was performed and the aggregated variance and the Higuchi methods were applied to test for the presence of long memory in the dataset. Furthermore, four breaks have been detected: in 1986, 1999, 2005, and 2013 using the Bayes information criterion. In the further section of the paper, the Hurst Exponent and Geweke-Porter-Hudak (GPH) methods were used to estimate the values of fractional differences. Thus, some ARFIMA models were identified using AIC (Akaike Information Criterion), BIC (Schwartz Bayesian Information Criterion), AICc (corrected AIC), and the RMSE (Root Mean Squared Error). In result, the following conclusions were reached: the ARFIMA(2,0.3589648,2)-sGARCH(1,1) model and the ARFIMA(2,0.3589648,2)-fGARCH(1,1) model under normal distribution proved to be the best models, demonstrating the smallest values for these criteria. The calculations conducted herein show that the two models are of the same accuracy level in terms of the RMSE value, which equals 0.08808882, and it is this result that distinguishes our study. In conclusion, these models can be used to predict oil prices more accurately than others.

Keywords: ARFIMA; volatility; fGARCH; sGARCH; modelling and forecasting; hybrid model. (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.21307/stattrans-2021-002 (text/html)

Related works:
Journal Article: Modelling and forecasting monthly Brent crude oil prices: a long memory and volatility approach (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:vrs:stintr:v:22:y:2021:i:1:p:29-54:n:9

DOI: 10.21307/stattrans-2021-002

Access Statistics for this article

Statistics in Transition New Series is currently edited by Włodzimierz Okrasa

More articles in Statistics in Transition New Series from Statistics Poland
Bibliographic data for series maintained by Peter Golla ().

 
Page updated 2025-03-20
Handle: RePEc:vrs:stintr:v:22:y:2021:i:1:p:29-54:n:9