Mixed effect models for absolute log returns of ultra high frequency data
Stephan Haug and
Claudia Czado
Applied Stochastic Models in Business and Industry, 2006, vol. 22, issue 3, 243-267
Abstract:
Considering absolute log returns as a proxy for stochastic volatility, the influence of explanatory variables on absolute log returns of ultra high frequency data is analysed. The irregular time structure and time dependency of the data is captured by utilizing a continuous time ARMA(p,q) process. In particular, we propose a mixed effect model class for the absolute log returns. Explanatory variable information is used to model the fixed effects, whereas the error is decomposed in a non‐negative Lévy driven continuous time ARMA(p,q) process and a market microstructure noise component. The parameters are estimated in a state space approach. In a small simulation study the performance of the estimators is investigated. We apply our model to IBM trade data and quantify the influence of bid‐ask spread and duration on a daily basis. To verify the correlation in irregularly spaced data we use the variogram, known from spatial statistics. Copyright © 2006 John Wiley & Sons, Ltd.
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.614
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:22:y:2006:i:3:p:243-267
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().