EconPapers    
Economics at your fingertips  
 

Issues in the optimal design of computer simulation experiments

Werner Müller and Milan Stehlík

Applied Stochastic Models in Business and Industry, 2009, vol. 25, issue 2, 163-177

Abstract: Output from computer simulation experiments is often approximated as realizations of correlated random fields. Consequently, the corresponding optimal design questions must cope with the existence and detection of an error correlation structure, issues largely unaccounted for by traditional optimal design theory. Unfortunately, many of the nice features of well‐established design techniques, such as additivity of the information matrix, convexity of design criteria, etc., do not carry over to the setting of interest. This may lead to unexpected, counterintuitive, even paradoxical effects in the design as well as the analysis stage of computer simulation experiments. In this paper we intend to give an overview and some simple but illuminating examples of this behaviour. Copyright © 2009 John Wiley & Sons, Ltd.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asmb.740

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:25:y:2009:i:2:p:163-177

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:25:y:2009:i:2:p:163-177