EconPapers    
Economics at your fingertips  
 

Assessment of uncertainty in computer experiments from Universal to Bayesian Kriging

C. Helbert, D. Dupuy and L. Carraro

Applied Stochastic Models in Business and Industry, 2009, vol. 25, issue 2, 99-113

Abstract: Kriging was first introduced in the field of geostatistics. Nowadays, it is widely used to model computer experiments. Since the results of deterministic computer experiments have no experimental variability, Kriging is appropriate in that it interpolates observations at data points. Moreover, Kriging quantifies prediction uncertainty, which plays a major role in many applications. Among practitioners we can distinguish those who use Universal Kriging where the parameters of the model are estimated and those who use Bayesian Kriging where model parameters are random variables. The aim of this article is to show that the prediction uncertainty has a correct interpretation only in the case of Bayesian Kriging. Different cases of prior distributions have been studied and it is shown that in one specific case, Bayesian Kriging supplies an interpretation as a conditional variance for the prediction variance provided by Universal Kriging. Finally, a simple petroleum engineering case study presents the importance of prior information in the Bayesian approach. Copyright © 2009 John Wiley & Sons, Ltd.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://doi.org/10.1002/asmb.743

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:25:y:2009:i:2:p:99-113

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:25:y:2009:i:2:p:99-113