EconPapers    
Economics at your fingertips  
 

Optimal designs for parameter estimation of the Ornstein–Uhlenbeck process

Maroussa Zagoraiou and Alessandro Baldi Antognini

Applied Stochastic Models in Business and Industry, 2009, vol. 25, issue 5, 583-600

Abstract: This paper deals with optimal designs for Gaussian random fields with constant trend and exponential correlation structure, widely known as the Ornstein–Uhlenbeck process. Assuming the maximum likelihood approach, we study the optimal design problem for the estimation of the trend µ and the correlation parameter θ using a criterion based on the Fisher information matrix. For the problem of trend estimation, we give a new proof of the optimality of the equispaced design for any sample size (see Statist. Probab. Lett. 2008; 78:1388–1396). We also show that for the estimation of the correlation parameter, an optimal design does not exist. Furthermore, we show that the optimal strategy for µ conflicts with the one for θ, since the equispaced design is the worst solution for estimating the correlation. Hence, when the inferential purpose concerns both the unknown parameters we propose the geometric progression design, namely a flexible class of procedures that allow the experimenter to choose a suitable compromise regarding the estimation's precision of the two unknown parameters guaranteeing, at the same time, high efficiency for both. Copyright © 2008 John Wiley & Sons, Ltd.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/asmb.749

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:25:y:2009:i:5:p:583-600

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:25:y:2009:i:5:p:583-600