Robust optimization for multiple responses using response surface methodology
Zhen He,
Jing Wang,
Jinho Oh and
Sung H. Park
Applied Stochastic Models in Business and Industry, 2010, vol. 26, issue 2, 157-171
Abstract:
Typically in the analysis of industrial data for product/process optimization, there are many response variables that are under investigation at the same time. Robustness is also an important concept in industrial optimization. Here, robustness means that the responses are not sensitive to the small changes of the input variables. However, most of the recent work in industrial optimization has not dealt with robustness, and most practitioners follow up optimization calculations without consideration for robustness. This paper presents a strategy for dealing with robustness and optimization simultaneously for multiple responses. In this paper, we propose a robustness desirability function distinguished from the optimization desirability function and also propose an overall desirability function approach, which makes balance between robustness and optimization for multiple response problems. Simplex search method is used to search for the most robust optimal point in the feasible operating region. Finally, the proposed strategy is illustrated with an example from the literature. Copyright © 2009 John Wiley & Sons, Ltd.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1002/asmb.788
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:26:y:2010:i:2:p:157-171
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().