EconPapers    
Economics at your fingertips  
 

L1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors

Saber Fallahpour, S. Ejaz Ahmed and Kjell A. Doksum

Applied Stochastic Models in Business and Industry, 2012, vol. 28, issue 3, 236-250

Abstract: In partially linear models, we consider methodology for simultaneous model selection and parameter estimation with random coefficient autoregressive errors by using lasso and shrinkage strategies. We provide natural adaptive estimators that significantly improve upon the classical procedures in the situation where some of the predictors are nuisance variables that may or may not affect the association between the response and the main predictors. In the context of two competing partially linear regression models (full and submodels), we consider an adaptive shrinkage estimation strategy and propose the shrinkage estimator and the positive‐rule shrinkage estimator. We develop the properties of these estimators by using the notion of asymptotic distributional risk. The shrinkage estimators are shown to have a higher efficiency than the classical estimators for a wide class of models. For the lasso‐type estimation strategy, we devise efficient algorithms to obtain numerical results. We compare the relative performance of lasso with the shrinkage estimator and the other estimators. Monte Carlo simulation experiments are conducted for various combinations of the nuisance parameters and sample size, and the performance of each method is evaluated in terms of simulated mean squared error. The comparison reveals that lasso and shrinkage strategies outperform the classical procedure. The relative performance of lasso and shrinkage strategies is comparable. The shrinkage estimators perform better than the lasso strategy in the effective part of the parameter space when, and only when, there are many nuisance variables in the model. A data example is showcased to illustrate the usefulness of suggested methods. Copyright © 2011 John Wiley & Sons, Ltd.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/asmb.933

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:28:y:2012:i:3:p:236-250

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:28:y:2012:i:3:p:236-250