Forecasting retained earnings of privately held companies with PCA and L1 regression
Harish S. Bhat and
Dan Zaelit
Applied Stochastic Models in Business and Industry, 2014, vol. 30, issue 3, 271-293
Abstract:
We use proprietary data collected by SVB Analytics, an affiliate of Silicon Valley Bank, to forecast the retained earnings of privately held companies. Combining methods of principal component analysis (PCA) and L1/quantile regression, we build multivariate linear models that feature excellent in‐sample fit and strong out‐of‐sample predictive accuracy. The combined PCA and L1 technique effectively deals with multicollinearity and non‐normality of the data, and also performs favorably when compared against a variety of other models. Additionally, we propose a variable ranking procedure that explains which variables from the current quarter are most predictive of the next quarter's retained earnings. We fit models to the top five variables identified by the ranking procedure and thereby, discover interpretable models with excellent out‐of‐sample performance. Copyright © 2013 John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.1972
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:30:y:2014:i:3:p:271-293
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().