Monitoring the mean of multivariate financial time series
Robert Garthoff,
Vasyl Golosnoy and
Wolfgang Schmid
Applied Stochastic Models in Business and Industry, 2014, vol. 30, issue 3, 328-340
Abstract:
Timely detection of changes in the mean vector of multivariate financial time series is of great practical importance. In this paper, the covariance dynamics of the multivariate stochastic processes is assessed by either the RiskMetrics approach, the constant conditional correlation, or the dynamic conditional correlation models. For online monitoring of mean changes, we introduce several control schemes based on exponential smoothing and cumulative sums, which explicitly account for heteroscedasticity. The detecting ability of the introduced charts is compared for different processes in a Monte Carlo simulation study. The empirical study illustrates monitoring of changes in the mean vector of daily returns of exchange rates. Copyright © 2013 John Wiley & Sons, Ltd.
Date: 2014
References: Add references at CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/asmb.1980
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:30:y:2014:i:3:p:328-340
Access Statistics for this article
More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().