EconPapers    
Economics at your fingertips  
 

Bayesian estimation of nonlinear equilibrium models with random coefficients

V. Viard, Anne Gron and Nicholas G. Polson

Applied Stochastic Models in Business and Industry, 2015, vol. 31, issue 4, 435-456

Abstract: In this paper, we develop a conditional likelihood based approach for estimating the equilibrium price and shares in markets with differentiated products and oligopoly supply. We model market demand using a discrete choice model with random coefficients and random utility. For most applications, the likelihood function of equilibrium prices and shares is intractable and cannot be directly analyzed. To overcome this, we develop a Markov Chain Monte Carlo simulation strategy to estimate parameters and distributions. To illustrate our methodology, we generate a dataset of prices and quantities simulated from a differentiated goods oligopoly across a number of markets. We apply our methodology to this dataset to demonstrate its attractive features as well as its accuracy and validity. Copyright © 2014 John Wiley & Sons, Ltd.

Date: 2015
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asmb.2036

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:31:y:2015:i:4:p:435-456

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-24
Handle: RePEc:wly:apsmbi:v:31:y:2015:i:4:p:435-456