EconPapers    
Economics at your fingertips  
 

Maximum likelihood estimation for stochastic volatility in mean models with heavy‐tailed distributions

Carlos A. Abanto‐Valle, Roland Langrock, Ming‐Hui Chen and Michel V. Cardoso

Applied Stochastic Models in Business and Industry, 2017, vol. 33, issue 4, 394-408

Abstract: In this article, we introduce a likelihood‐based estimation method for the stochastic volatility in mean (SVM) model with scale mixtures of normal (SMN) distributions. Our estimation method is based on the fact that the powerful hidden Markov model (HMM) machinery can be applied in order to evaluate an arbitrarily accurate approximation of the likelihood of an SVM model with SMN distributions. Likelihood‐based estimation of the parameters of stochastic volatility models, in general, and SVM models with SMN distributions, in particular, is usually regarded as challenging as the likelihood is a high‐dimensional multiple integral. However, the HMM approximation, which is very easy to implement, makes numerical maximum of the likelihood feasible and leads to simple formulae for forecast distributions, for computing appropriately defined residuals, and for decoding, that is, estimating the volatility of the process. Copyright © 2017 John Wiley & Sons, Ltd.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1002/asmb.2246

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:33:y:2017:i:4:p:394-408

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:33:y:2017:i:4:p:394-408