EconPapers    
Economics at your fingertips  
 

Assessing Markov property in multistate transition models with applications to credit risk modeling

Hanyu Yang, Vijayan N. Nair, Jie Chen and Agus Sudjianto

Applied Stochastic Models in Business and Industry, 2019, vol. 35, issue 3, 552-570

Abstract: Multistate transition models are increasingly used in credit risk applications as they allow us to quantify the evolution of the process among different states. If the process is Markov, analysis and prediction are substantially simpler, so analysts would like to use these models if they are applicable. In this paper, we develop a procedure for assessing the Markov hypothesis and discuss different ways of implementing the test procedure. One issue when sample size is large is that the statistical test procedures will detect even small deviations from the Markov model when these differences are not of practical interest. To address this problem, we propose an approach to formulate and test the null hypothesis of “weak non‐Markov.” The situation where the transition probabilities are heterogeneous is also examined, and approaches to accommodate this case are indicated. Simulation studies are used extensively to study the properties of the procedures, and two applications are to illustrate the results.

Date: 2019
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/asmb.2336

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:35:y:2019:i:3:p:552-570

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:35:y:2019:i:3:p:552-570