EconPapers    
Economics at your fingertips  
 

Bayesian modeling and forecasting of Value‐at‐Risk via threshold realized volatility

Cathy W. S. Chen () and Toshiaki Watanabe

Applied Stochastic Models in Business and Industry, 2019, vol. 35, issue 3, 747-765

Abstract: This study proposes a threshold realized generalized autoregressive conditional heteroscedastic (GARCH) model that jointly models daily returns and realized volatility, thereby taking into account the bias and asymmetry of realized volatility. We incorporate this threshold realized GARCH model with skew Student‐t innovations as the observation equation, view this model as a sharp transition model, and treat the realized volatility as a proxy for volatility under this nonlinear structure. Through the Bayesian Markov chain Monte Carlo method, the model can jointly estimate the parameters in the return equation, the volatility equation, and the measurement equation. As an illustration, we conduct a simulation study and apply the proposed method to the US and Japan stock markets. Based on quantile forecasting and volatility estimation, we find that the threshold heteroskedastic framework with realized volatility successfully models the asymmetric dynamic structure. We also investigate the predictive ability of volatility by comparing the proposed model with the traditional GARCH model as well as some popular asymmetric GARCH and realized GARCH models. This threshold realized GARCH model with skew Student‐t innovations outperforms the competing risk models in out‐of‐sample volatility and Value‐at‐Risk forecasting.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://doi.org/10.1002/asmb.2395

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:apsmbi:v:35:y:2019:i:3:p:747-765

Access Statistics for this article

More articles in Applied Stochastic Models in Business and Industry from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:apsmbi:v:35:y:2019:i:3:p:747-765