Entropic Latent Variable Integration via Simulation
Susanne Schennach
Econometrica, 2014, vol. 82, issue 1, 345-385
Abstract:
This paper introduces a general method to convert a model defined by moment conditions that involve both observed and unobserved variables into equivalent moment conditions that involve only observable variables. This task can be accomplished without introducing infinite‐dimensional nuisance parameters using a least favorable entropy‐maximizing distribution. We demonstrate, through examples and simulations, that this approach covers a wide class of latent variables models, including some game‐theoretic models and models with limited dependent variables, interval‐valued data, errors‐in‐variables, or combinations thereof. Both point‐ and set‐identified models are transparently covered. In the latter case, the method also complements the recent literature on generic set‐inference methods by providing the moment conditions needed to construct a generalized method of moments‐type objective function for a wide class of models. Extensions of the method that cover conditional moments, independence restrictions, and some state‐space models are also given.
Date: 2014
References: Add references at CitEc
Citations: View citations in EconPapers (38)
Downloads: (external link)
http://hdl.handle.net/10.3982/ECTA9748
Related works:
Working Paper: Entropic Latent Variable Integration via Simulation (2013) 
Working Paper: Entropic Latent Variable Integration via Simulation (2013) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:82:y:2014:i:1:p:345-385
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().