EconPapers    
Economics at your fingertips  
 

Credibility of Confidence Sets in Nonstandard Econometric Problems

Ulrich K. Müller and Andriy Norets

Econometrica, 2016, vol. 84, 2183-2213

Abstract: Confidence intervals are commonly used to describe parameter uncertainty. In nonstandard problems, however, their frequentist coverage property does not guarantee that they do so in a reasonable fashion. For instance, confidence intervals may be empty or extremely short with positive probability, even if they are based on inverting powerful tests. We apply a betting framework and a notion of bet‐proofness to formalize the “reasonableness” of confidence intervals as descriptions of parameter uncertainty, and use it for two purposes. First, we quantify the violations of bet‐proofness for previously suggested confidence intervals in nonstandard problems. Second, we derive alternative confidence sets that are bet‐proof by construction. We apply our framework to several nonstandard problems involving weak instruments, near unit roots, and moment inequalities. We find that previously suggested confidence intervals are not bet‐proof, and numerically determine alternative bet‐proof confidence sets.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:84:y:2016:i::p:2183-2213

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido W. Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:emetrp:v:84:y:2016:i::p:2183-2213