EconPapers    
Economics at your fingertips  
 

Stochastic Learning Dynamics and Speed of Convergence in Population Games

Itai Arieli and H. Peyton Young

Econometrica, 2016, vol. 84, 627-676

Abstract: We study how long it takes for large populations of interacting agents to come close to Nash equilibrium when they adapt their behavior using a stochastic better reply dynamic. Prior work considers this question mainly for 2 × 2 games and potential games; here we characterize convergence times for general weakly acyclic games, including coordination games, dominance solvable games, games with strategic complementarities, potential games, and many others with applications in economics, biology, and distributed control. If players' better replies are governed by idiosyncratic shocks, the convergence time can grow exponentially in the population size; moreover, this is true even in games with very simple payoff structures. However, if their responses are sufficiently correlated due to aggregate shocks, the convergence time is greatly accelerated; in fact, it is bounded for all sufficiently large populations. We provide explicit bounds on the speed of convergence as a function of key structural parameters including the number of strategies, the length of the better reply paths, the extent to which players can influence the payoffs of others, and the desired degree of approximation to Nash equilibrium.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://hdl.handle.net/

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:84:y:2016:i::p:627-676

Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues

Access Statistics for this article

Econometrica is currently edited by Guido W. Imbens

More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:emetrp:v:84:y:2016:i::p:627-676