IV Quantile Regression for Group‐Level Treatments, With an Application to the Distributional Effects of Trade
Denis Chetverikov,
Bradley Larsen and
Christopher Palmer
Econometrica, 2016, vol. 84, 809-833
Abstract:
We present a methodology for estimating the distributional effects of an endogenous treatment that varies at the group level when there are group‐level unobservables, a quantile extension of Hausman and Taylor, 1981. Because of the presence of group‐level unobservables, standard quantile regression techniques are inconsistent in our setting even if the treatment is independent of unobservables. In contrast, our estimation technique is consistent as well as computationally simple, consisting of group‐by‐group quantile regression followed by two‐stage least squares. Using the Bahadur representation of quantile estimators, we derive weak conditions on the growth of the number of observations per group that are sufficient for consistency and asymptotic zero‐mean normality of our estimator. As in Hausman and Taylor, 1981, micro‐level covariates can be used as internal instruments for the endogenous group‐level treatment if they satisfy relevance and exogeneity conditions. Our approach applies to a broad range of settings including labor, public finance, industrial organization, urban economics, and development; we illustrate its usefulness with several such examples. Finally, an empirical application of our estimator finds that low‐wage earners in the United States from 1990 to 2007 were significantly more affected by increased Chinese import competition than high‐wage earners.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (60)
Downloads: (external link)
http://hdl.handle.net/
Related works:
Working Paper: IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade (2015) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:emetrp:v:84:y:2016:i::p:809-833
Ordering information: This journal article can be ordered from
https://www.economet ... ordering-back-issues
Access Statistics for this article
Econometrica is currently edited by Guido W. Imbens
More articles in Econometrica from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().